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Abstract 

This paper empirically analyses the relationship between oil prices and real economic activity in the 

US. We seek to contribute to the literature by reconsidering the measurement of oil prices. We do so 

by accounting for whether oil price shocks follow periods of quiescence or volatility, since the former 

oil price changes could be more shocking. This study also accounts for asymmetry of shocks, since 

both theory and our empirical findings indicate that positive shocks to oil prices have a greater impact 

on economic activity than negative ones. We implement a rolling window approach in VARs and 

IRFs to investigate the time-varying nature of the relationship. Based on these, we find no clear 

evidence of the oil price-macroeconomy relationship weakening over time. There is strong evidence 

for asymmetry across specifications, proxies, and sample periods. Impulse response analysis suggests 

that a rise in oil prices is expected to lead to a decline in output growth rate and that this effect is larger 

in the second half of the dataset. 
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 Introduction 

An economy’s long-run growth and development critically depend on its resilience and 

susceptibility to shocks (Balassa, 1986; Romer & Romer, 2004; Martin, 2012). Energy shocks 

have been placed at the centre of this observation, since growth-inducing activities are highly 

dependent on access to energy. For the past few decades, heavy global dependence on non-

renewable energy sources has been considered a significant threat to sustainable economic 

growth. Hamilton (1983) observed in post-World War II data that about 90% of US recessions 

were preceded by drastic increases in oil prices, which made the oil price-macroeconomy 

relationship a central focus of research for decades. Recent political turmoil in the Middle 

East as well as the desire to control carbon emissions and to incorporate more renewables 

into the energy mix have increased attention to the topic once again. 

 

For net importers of oil, the nature of the relationship between oil prices and macroeconomic 

activity seems obvious: an oil price rise should, ceteris paribus, reduce economic growth 

through higher costs for individuals and firms (Hamilton, 2005). However, despite numerous 

theoretical predictions and empirical studies, debates continue, and there is mixed empirical 

evidence of a link between oil prices and macroeconomic activity.  

 

This study argues that this debate is partly fuelled by the way in which empirical modelling is 

done. A central argument in this study is that robust results can be obtained using a relatively 

uncomplicated vector autoregressive (VAR) models and without relying on proxies or 

explicitly identifying the nature of oil price shocks. More broadly, this paper is motivated by 

three controversial questions within the oil price-macroeconomy theme, as discussed in 

Herrera et al. (2019) and seeks to make the following contributions to the literature. First, we 

extend the literature on oil price modelling by normalising oil price fluctuations. Second, we 

analyse the stability of the relationship over time. Third, we test for asymmetry explicitly. 

Finally, we argue that normalising oil price shocks by their volatility aids empirical modelling 

without the need to model the nature of shocks, as in Kilian (2009), which has attracted 

criticism.  
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A key focus and contribution in this study is the combination of the implementation of 

normalised (volatility-adjusted) oil price series and a time-varying parameter approach using 

a rolling-window technique. The rolling-window implementation is akin to that adopted by 

Blanchard & Galí (2007) but without being restricted to bivariate rolling VARs. This study is 

also distinct from Baumeister & Peersman (2013b), whose approach allows for time-varying 

parameters, and Hooker (1996b), who uses disjointed subsamples, but resembles Gronwald's 

(2012) estimation strategy. As noted in Gronwald (2012), the innovative rolling-window 

implementation of a commonly-favoured VAR technique is robust and lends itself to easy 

interpretation and comparison of results.  

 

The key contributions of this paper are as follows. First, oil price changes are normalised 

(volatility-adjusted), which captures the effect of oil price volatility preceding an oil price 

shock. Second, a rolling window approach is adopted, which highlights how the relationship 

has evolved over time.  

 

The results in this study indicate that the impact of oil price rises on GDP growth is larger in 

the 1970s than early 1980s, but that this reverses after 1986. Further, we observe no loss of 

statistical significance of oil price hikes in the GDP growth equation in recent samples, which 

disagrees with some earlier findings in the literature. We argue that this is due to the use of 

volatility-adjusted oil price series. We also find evidence that refiners’ acquisition cost (RAC) 

is, in some cases, a more robust measure of oil prices than producer price index (PPI) in crude 

petroleum. We find strong evidence for asymmetry in the way GDP growth reacts to changes 

in oil prices: a price increase is likely to have an impact on US output growth, but a price fall 

is not.  

 Literature Review 

The choice of oil price variable has received particular attention in the literature. Bernanke et 

al. (1997) noted that “it is surprisingly difficult to find an indicator of oil price shocks that 

produces the expected responses of macroeconomic and policy variables in a VAR setting.” 

Although West Texas Intermediate (WTI) and Brent prices seem like obvious choices, they 

are not necessarily well suited for econometric analysis given their sensitivity to logistical 
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disruptions. For example, although WTI is expected to cost more than Brent due to its more 

desirable petrochemical properties, logistical bottlenecks have translated into the opposite 

relationship between the two benchmark crude prices over the last decade. Various attempts 

have been made to capture the true nature of oil price shocks, including the use of different 

oil price measures (for example, producer price indices and refiners’ acquisition cost) and 

introduction of non-linear oil price specifications (for example, Hamilton, 2003; Hooker, 

1996b; Kilian, 2009).  

 

More recently, the topic has received considerable attention with researchers implementing 

larger VAR specifications (for example, Hamilton, 2005; Jiménez-Rodríguez & Sanchez, 

2005; Kilian, 2009), allowing for different types of oil price shocks (for example, Kilian, 2009), 

using groups of countries for their study (for example, Gómez-Loscos, Gadea, & Montañés, 

2012), and explicitly testing for the asymmetric impact discussed above (for example, Kilian 

& Vigfusson, 2011). Both Mory (1993) and Lee et al. (1995) found evidence for an asymmetric 

effect of oil price hikes on the US economy, and the latter further concluded that volatility of 

oil prices – and not just changes in the levels of the variable – matters for the relationship. 

Following Blanchard & Galí's (2007) observation that the nature of the relationship evolved 

over time and Gronwald's (2008, 2012) findings that oil price shocks need to be sufficiently 

large to have a significant impact on macroeconomic variables, this paper offers a novel 

hybrid approach. We argue that an oil price shock of the same absolute magnitude has a 

different effect on macroeconomic fundamentals depending on oil price volatility in the time 

periods leading up to it.  

 

There are several key reasons oil price volatility matters for the oil price – macroeconomic 

activity relationship. First, although supply and demand underlie oil price fluctuations, the 

way these are manifested in agents’ behaviour is what determines the aggregate impact. In 

this context, expectations matter and volatility-adjustment of oil price fluctuations is critical. 

Pindyck (2004b) highlighted the importance of volatility by stating that persistent changes in 

volatility can expose producers and consumers to risk and affect investment decisions, 

including those in production facilities and transportation. Further, the author determined 

that volatility has implications for derivative valuation, hedging decisions, and investment 
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decisions in physical capital tied to production and consumption of oil. Volatility has 

implications for total marginal cost of production and influences firms’ operating options and 

opportunity cost of production (Pindyck, 2004a). Given that oil price volatility has increased 

over time, capturing oil price volatility in this study has provided further identifying variation 

unexploited in traditional models. 

 

Understanding the role of oil price volatility is a key objective in this study. The literature in 

this area spans a wide range of themes: Sadorsky (2006) attempted to forecast volatility; Lee 

et al. (1995), Ferderer (1997), Yang, Hwang, & Huang (2002), and Chen & Chen (2007) 

investigated the relationship between oil price volatility and the economy; Huang, Masulis, 

& Stoll (1996), and Sadorsky (1999, 2003) examined the linkages between oil price volatility 

and stock price performance; Plourde & Watkins (1998), Pindyck (1999), and Regnier (2007) 

studied the relative volatility of crude oil, refined petroleum products, and natural gas prices; 

and B.-N. Huang et al. (2005) and Narayan & Narayan (2007) examined the asymmetry of 

oil price shocks’ impact on economic activity. Modelling oil prices using high-frequency data, 

Wei et al. (2010) found that nonlinear GARCH-class models exhibit greater forecasting 

accuracy than the linear ones.  

 

In the last few decades, part of the debate within the oil price – macroeconomy literature 

morphed into a practical discussion of the exogeneity of oil prices and how to model them. 

In this context, oil price rises are thought to have different underlying causes with researchers 

on both sides of the argument. As a result, numerous studies, starting with Kilian (2009) and 

Hamilton (2009), have tried to model oil prices differently based on their root cause. As a part 

of this, Hamilton (2009) has argued that oil price rises have traditionally been viewed as 

exogenous shocks caused by supply disruptions but that there is increasing consensus that the 

price hike of 2007-2008 was due to a combination of strong demand for oil and stagnating 

world oil production. Other studies since then have found contradicting results pointing out 

that other factors, such as sample period and reliance on oil versus other fuels, matter more 

than the nature of oil price fluctuations.  
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Researchers have attempted to identify proxies to categorise oil shocks, including global 

shipping traffic under the Baltic Dry Index as an indication of global economic activity, but 

this is hardly a reliable measure as there are many logistical reasons unrelated to global 

economic performance this variable can change behaviour. Blanchard & Galí (2007) mention 

that identifying a more exogenous proxy for oil prices is an option but that it is unnecessary. 

The authors state, in response to Kilian's (2008) attempt to use global oil production as a 

proxy, that “what matters, however, to any given country is not the level of global oil 

production, but the price at which firms and households can purchase oil […].”  

 

This paper proposes a normalisation process and asymmetric split of price changes as an 

alternative approach. One advantage of this approach is that it does not require unreliable 

proxies. The normalisation process is self-contained within the model, whereas identifying 

different types of shocks requires local and global oil demand series as well as an indicator of 

global economic activity.  

 Methodology and Data 

Several model specifications with increasing complexity and coverage are implemented to 

facilitate an analysis of the four key questions mentioned above. Starting with a base model 

similar to that used by Hamilton (1983), the study incorporates ideas put forth by Mork (1989) 

and Lee et al. (1995), including non-linear modelling of oil prices and normalisation of oil 

price series. Further, time-varying parameters are estimated using a rolling-window technique 

to provide further insights as to the nature of the oil price-macroeconomy relationship and its 

evolution over time.  

 

The base model is a 5-variable VAR system and consists of GDP growth, oil price changes, 

GDP implicit deflator inflation, real wage inflation, and unemployment. The first extension 

to the base model incorporates the asymmetric response idea popularised by Mork (1989) and 

later adopted by Lee et al. (1995) and Hamilton (1996). This involves splitting oil price 

changes into two parts to model oil price increases and decreases separately. Denoting oil 

price changes as 𝑜𝑡, the new variables are: 
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𝑜𝑡
+ = {

𝑜𝑡 , 𝑜𝑡 > 0
0, 𝑜𝑡 ≤ 0

 

𝑜𝑡
− = {

0, 𝑜𝑡 ≥ 0
𝑜𝑡 , 𝑜𝑡 < 0

 

(1) 

 

Having done this, we implement a further extension to capture the nature of oil price 

fluctuations more accurately. This involves using a univariate generalised autoregressive 

conditional heteroscedasticity, GARCH (1,1), process to calculate the conditional variance 

of oil price changes and normalise unanticipated real oil price fluctuations. These normalised 

oil price changes capture the idea that small price increases within volatile periods are 

predicted to have little effect on economic agents’ behaviour, if they do not generate enough 

uncertainty to delay irreversible investments (Hooker, 1999). 

 

The idea underpinning this approach is that the mean of real oil price changes may rise over 

time without agents being surprised as long as the distribution of oil price fluctuations remains 

unchanged. In other words, oil prices may increase or decrease over time (in levels) without 

any impact on economic activity in the absence of unanticipated shocks. Normalised variables 

are constructed as follows: 

𝑧𝑡 =  𝛼0 +  ∑ 𝛼𝑖𝑧𝑡−𝑖 + 𝜀𝑡

4

𝑖=1

 (2) 

ℎ𝑡 =  𝛾0 +  𝛾1𝜀𝑡−1
2 + 𝛾2ℎ𝑡−1 (3) 

where, 𝜀𝑡|𝐼𝑡−1~𝑁(0, ℎ𝑡), and 𝑧𝑡 are oil prices measured as the change in refiners’ acquisition 

cost (RAC) or producer price index in crude petroleum (PPI). The unexpected part of the oil 

price shock is the residual term of equation 2, 𝜀𝑡̂ = 𝑧𝑡 − 𝑧𝑡̂. Normalised oil price shocks are 

then calculated as, 

𝜀𝑡
∗ = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑂𝑖𝑙 𝑃𝑟𝑖𝑐𝑒 𝑆ℎ𝑜𝑐𝑘 =

𝜀𝑡̂

√ℎ𝑡

 (4) 

 

Finally, the resulting variable is split into two parts as, 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑂𝑖𝑙 𝑃𝑟𝑖𝑐𝑒 𝑆ℎ𝑜𝑐𝑘 (𝜀𝑡
∗+) = max(0, 𝜀𝑡

∗) (5) 
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑂𝑖𝑙 𝑃𝑟𝑖𝑐𝑒 𝑆ℎ𝑜𝑐𝑘 (𝜀𝑡
∗−) = min(0, 𝜀𝑡

∗ )  (6) 

Assuming unexpected variation in real oil prices has an impact on how the price shocks affect 

real output, the normalised variable, 𝜀𝑡
∗, is predicted to have a more systematic causal link to 

real GDP than either 𝑧𝑡 or 𝜀𝑡̂ (Lee et al., 1995). As in Lee et al. (1995), our a priori expectation 

is that unexpected oil price shocks have a greater effect on output than anticipated ones. That 

is, a shock should have a greater impact on GDP growth if it immediately follows a long 

period of stable prices. Similarly, an oil price change of the same magnitude is expected to 

have a smaller impact on output growth, if it is preceded by a period of volatile prices.  

 

Although not a main focus of this study, VAR systems using Hamilton's (1996) net oil price 

increases (NOPI) are estimated as a robustness check. With quarterly data, this variable is 

defined as the amount by which log oil prices in quarter 𝑡 exceed the maximum value over 

the past four quarters. If log oil price in the current quarter does not surpass any of the previous 

4 values, NOPI takes on the value of 0. Therefore,  

𝑁𝑂𝑃𝐼𝑡 =  max(0, 100 × {ln(𝑜𝑡) − ln [max(𝑜𝑡−1, 𝑜𝑡−2, 𝑜𝑡−3, 𝑜𝑡−4)]}) (7) 

 

Throughout the analysis, oil price changes are captured using two proxies: PPI in crude 

petroleum and RAC. Using the former has been criticised with RAC being proposed as a 

robust alternative, so this study lays the groundwork for a direct comparison in the context of 

VAR systems. Lastly, some researchers, including Hamilton (1996b), have deflated their 

measure of output using PPI in all commodities. We find this to be problematic, because it 

introduces an artificial correlation between oil prices and deflated GDP, since some 

commodities that enter the PPI measure are oil-related products. As a result, my analysis uses 

PPI in finished goods to deflate GDP.  

 

Orthogonalised impulse responses are calculated following Cholesky decomposition to 

visualise the VAR results. The impulse response functions cover a 20-quarter period and are 

reported with standard error bands, which are used to comment on their statistical 

significance. Table A1 in the Appendix provides a summary of all model specifications 

implemented as part of the analysis. 



10 

All data are in quarterly frequency. Most series are available from 1950:1 through 2015:2. The 

exceptions are RAC, import price index, and 3-month Treasury Bill (TB) rate, which are 

available from 1974:1, 1982:3, and 1972:1, respectively. All series are expressed in first-

differenced natural logarithm except for real wage growth, which is only first-differenced. The 

sample period stops in mid-2015 to avoid potential biases from the rapid increase in oil 

production in the shale revolution and, more recently, the ongoing distortions due to COVID-

19 pandemic.  

 

Figure 1 demonstrates the impact of normalising RAC-based oil price fluctuations from 

1974:1 through 2015:2. As illustrated by the diagram, normalisation process rescales the oil 

price fluctuations based on price behaviour in the preceding four quarters. More specifically, 

if a price increase is preceded by a period of relatively stable prices, it is exaggerated. Similarly, 

a price change following a particularly volatile period is scaled down. An example of the 

former is observed in the fourth quarter of 2008 where the -74% fall in price is represented as 

a much larger decline in 𝜀𝑡
∗. The end of 2008 saw a rapid decline in oil prices, although the 

previous four quarters had been relatively stable. After normalisation, therefore, the fourth 

quarter’s price fall is scaled up substantially. Having observed a volatile quarter at the end of 

2008, however, the further decline in prices in the first quarter of 2009 is scaled down and the 

normalised oil price shock is less, in absolute value, than the true price change.  
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Figure 1. Oil price changes and normalised oil price fluctuations.  

Notes: In this figure, 𝜀𝑡
∗ denotes the oil price variable normalised using the approach outlined in equation 4. 

RAC is refiners’ acquisition cost.  

 

 Empirical Results 

The primary aim of this study is twofold. First, it investigates what effect, if any, oil price 

volatility preceding an oil price shock has on the oil price-macroeconomy relationship. 

Second, it focuses on how the relationship has evolved over time using a rolling window 

approach.  

 

The results are presented starting with the base model and ending with larger specifications. 

Estimations over a few discrete subsamples allow a preview of the relationship over time 

before the rolling-window implementation covering a continuum of subsamples. The sample 

periods analysed separately are 1950:1 through 1986:1, 1974:1 through 2015:2, 1986:1 

through 2015:2, and the entire sample period. The sample periods have been chosen partly to 

compare the results with those in the existing literature more easily and partly due to data 

availability. A key consideration in selecting the second and third subsamples was to avoid 

the bias introduced by Nixon price controls that ended in April 1974. This is to test for and 

address the criticism that the oil price-macroeconomy relationship vanished after 1973 but 
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appears significant in recent sample periods only because pre-1973 observations drive the 

relationship. The whole sample period is included for reference. 

 

To formally test the link between standardised oil prices and economic activity, we use 

Granger causality tests. In these results, statistical significance refers to Granger causality: 

rejection of the null hypothesis provides evidence for Granger causality, and a failure to reject 

the null hypothesis provides no evidence for Granger causality. More specifically, in each 

equation the VAR system, the null hypothesis is that (lagged) explanatory variables have no 

statistically significant relationship with the dependent variable. Hence, a rejection of the null 

points to evidence that (lagged) explanatory variables are related to the dependent variable 

and that they Granger cause the latter. If the null is not rejected, explanatory variables do not 

Granger cause the dependent variable. Overall, the null hypothesis is equivalent to no 

Granger causality, and the alternative suggests Granger causality.  

4.1 Base Model 

Table 2 shows a summary of exclusion tests for Granger causality. These are joint F-tests for 

the significance of all four lags of the oil price change variable in the GDP growth equation 

of the corresponding model. The null hypothesis is that none of the four coefficients are 

statistically different from zero. 

 

Base Model Variable 
1950:1-

1985:4 † 

1974:1-

2015:2 †† 

1986:1-

2015:2 ††† 

1950:1-

2015:2 † 

PPI 
Oil Price 

Change 

27.959*** 18.326*** 9.598** 21.632*** 

(0.000) (0.001) (0.048) (0.000) 

RAC 
Oil Price 
Change 

— 
22.807*** 11.190** 

— 
(0.000) (0.025) 

Table 2. Exclusion tests for the base model. P-values are given in parentheses. Statistical significance is shown 

at the 10% level (*), 5% level (**) and 1% level (***). This table shows results for different model specifications 

corresponding to each sample period: 5-variable VAR (base model, denoted as †), 6-variable VAR (base model 

+ 3-month TB rate, denoted as ††) and 7-variable VAR (base model + 3-month TB rate + import price inflation, 

denoted as †††). 

 

The table shows different model specifications in each of the subsamples. The most 

comprehensive 7-variable specification is used over the most recent period, 1986:1-2015:2. A 

smaller specification without import price inflation is estimated over the 1974:1 through 

2015:2 subsample due to the availability of this series. The remaining two sample periods are 
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analysed using a 5-variable VAR where 3-month TB rate is also omitted. Based on the 

resulting test statistics, we reject the null hypothesis in all model specifications across all 

subsamples at the 5% level and conclude that oil price changes do Granger-cause fluctuations 

in real GDP growth in every specification and sample period.  

 

For direct comparison with the 7-variable system shown in Table 2, we estimated the 5-

variable system over 1986:1-2015:2. The test statistic for the joint significance of coefficients 

on all four lags of oil price changes is 18.296 with a p-value of 0.001 when PPI in crude oil is 

used as the proxy for oil prices, and 20.891 with a p-value of 0 when RAC is used. After a 

preliminary analysis of the difference in test statistics across model specification and 

information criteria, 3-month TB rate and import price inflation appear to be valuable control 

variables: they increase the explanatory power of the model and in their absence, oil price 

variables have higher statistical significance pointing to a potential omitted variable bias. A 

general observation in line with the literature is that statistical significance becomes weaker 

in more recent subsamples even with identical specifications. Having observed this, we turn 

to models that allow for asymmetry to investigate whether that has implications for the 

stability and robustness of the causal relationship. 

4.2 Asymmetric Effects Model 

Table 3 summarises the F-statistics of exclusion tests obtained by separating oil price changes 

into their positive and negative counterparts. Test results indicate that oil price increases 

Granger-cause changes in GDP growth, whereas the relationship is less clear for oil price 

decreases. In subsamples 1974:1 through 2015:2 and 1986:1 through 2015:2, RAC-based oil 

price increases have a higher statistical significance than the PPI-based ones. This is due to 

the degree to which PPI for crude petroleum and RAC are correlated with the included 

control variables. For example, since oil imports constitute a considerable portion of all US 

imports, oil and import prices are expected to be correlated. Further investigation indicates 

that PPI for crude petroleum is significantly more correlated with import price inflation than 

RAC. Part of this investigation revealed that the root-mean-square error (RMSE) did not 

change substantially across models and sample periods, suggesting that the observed variation 

in results is not due to worse model fit in general. The next section introduces normalised oil 
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prices to further extend the estimated systems and focus on the effect of normalisation on the 

observed relationship.  

 

  (I) (II) (III) (IV) 

Proxy Variable 
1950:1-

1985:4 † 

1974:1-

2015:2 †† 

1986:1-

2015:2 ††† 

1950:1-

2015:2 † 

PPI 

Oil Price Increase 
32.186*** 19.140*** 10.211** 25.313*** 

(0.000) (0.001) (0.037) (0.000) 

Oil Price Decrease 
1.583 12.629** 8.425* 8.632* 

(0.812) (0.013) (0.077) (0.071) 

Inflation, GDP 
Deflator 

2.676 8.131* 3.349 16.023*** 

(0.613) (0.087) (0.501) (0.003) 

3-month TB Rate — 
1.952 5.616 

— 
(0.745) (0.230) 

Unemployment Rate 
9.932* 14.392*** 12.374** 13.917*** 

(0.080) (0.006) (0.015) (0.008) 

Real Wage Inflation 
7.779 2.356 2.269 5.519 

(0.100) (0.671) (0.686) (0.238) 

Import Price Inflation — — 
1.049 

— 
(0.902) 

RAC 

Oil Price Increase — 
26.356*** 15.754*** 

— 
(0.000) (0.003) 

Oil Price Decrease — 
8.758* 8.116* 

— 
(0.067) (0.087) 

Inflation, GDP 
Deflator 

— 
6.941 3.134 

— 
(0.139) (0.536) 

3-month TB Rate — 
2.301 6.494 

— 
(0.681) (0.165) 

Unemployment Rate — 
11.835** 11.471** 

— 
(0.019) (0.022) 

Real Wage Inflation — 
2.111 2.123 

— 
(0.715) (0.713) 

Import Price Inflation — — 
0.759 

— 
(0.944) 

Table 3. Exclusion tests of asymmetric effects model with GDP growth as the dependent variable. P-values are 

given in parentheses. Statistical significance is shown at the 10% level (*), 5% level (**) and 1% level (***). This 

table shows results for different model specifications corresponding to each sample period: 5-variable VAR (base 

model, denoted as †), 6-variable VAR (base model + 3-month TB rate, denoted as ††) and 7-variable VAR (base 

model + 3-month TB rate + import price inflation, denoted as †††). 
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4.3 Normalised and Net Oil Price Models 

Before incorporating normalised oil price variables into the VAR systems, we run preliminary 

tests to examine the suitability of a GARCH (1,1) process in this context. Table 4 lists the 

estimated coefficients from the GARCH model expressed by equations 2 and 3 above.  

 

  (I) (II) (III) (IV) 

Proxy Parameter 1950:1-1985:4 1974:1-2015:2 1986:1-2015:2 1950:1-2015:2 

PPI 

α0 
0.011** 0.017 0.013 0.003 

(0.028) (0.222) (0.379) (0.377) 

α1 
0.770*** 0.258 0.264** 0.394** 

(0.000) (0.121) (0.014) (0.026) 

α2 
0.007 -0.300** -0.336** -0.393** 

(0.959) (0.017) (0.011) (0.010) 

α3 
0.064 0.110 0.141* 0.250 

(0.244) (0.419) (0.097) (0.274) 

α4 
0.035 -0.067 -0.161* -0.056 

(0.378) (0.505) (0.064) (0.792) 

γ0 
0.000 0.004 0.012*** 0.000 

(0.333) (0.617) (0.008) (0.325) 

γ1 
5.951** 0.433 0.217 1.220* 

(0.017) (0.154) (0.222) (0.055) 

γ2 
0.014 0.497 0.328 0.493*** 

(0.483) (0.110) (0.135) (0.000) 

RAC 

α0 — 
0.016 0.015 

— 
(0.117) (0.310) 

α1 — 
0.411*** 0.309** 

— 
(0.003) (0.013) 

α2 — 
-0.371*** -0.318*** 

— 
(0.004) (0.005) 

α3 — 
0.230** 0.318 

— 
(0.023) (0.213) 

α4 — 
0.085 0.375*** 

— 
(0.145) (0.009) 

γ0 — 
0.004 0.009*** 

— 
(0.332) (0.003) 

γ1 — 
0.384* 0.008** 

— 
(0.054) (0.020) 

γ2 — 
0.421 0.311** 

— 
(0.128) (0.039) 

Table 4. Parameter estimates for GARCH (1,1). P-values are given in parentheses. Statistical significance is 

shown at the 10% level (*), 5% level (**) and 1% level (***). 
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From these results, GARCH (1,1) representation of oil prices to compute conditional variance 

of oil price shocks appears to be appropriate. The main observation is that ARCH and 

GARCH terms, 𝛾1 and 𝛾2, are statistically significant in several sample periods. Most notably, 

recent time periods exhibit GARCH behaviour in errors. Estimated parameters are 

qualitatively identical to those obtained by Lee et al. (1995) and have the expected signs. The 

marginally-significant GARCH coefficient in Lee et al. (1995) is not statistically significant in 

our dataset—see column (I) of Table 4.  

 

Analysis of autocorrelation in residuals of the GARCH model in each sample period showed 

that there is no unexploited information in residuals for sample periods 1974:1 and later. 

Although there is some autocorrelation in residuals for earlier samples, increasing the number 

of AR lags or ARCH and GARCH terms did not improve the behaviour of the residuals. For 

the 1974:1-2015:2 subsample, PPI and RAC GARCH (1,1) residuals resulted in a Ljung-Box 

Q statistic of 19.23 (p=0.739) and 12.92 (p=0.968), respectively. Furthermore, Bollerslev, 

Chou, & Kroner (1992) argue that low-order GARCH models outperform alternative 

methods the authors investigate. In light of these, GARCH (1,1) specification is adopted as a 

parsimonious representation of the conditional variance of 𝜀𝑡 in equation 2 above. Therefore, 

this specification is used to calculate 𝜀𝑡
∗. 

 

Characteristics of the conditional variance process of 𝜀𝑡 appear to have changed over time. 

More specifically, in earlier sample periods, the sum of 𝛾1 and 𝛾2 is greater than one, 

suggesting that the conditional variance process is highly persistent. In Engle & Bollerslev's 

(1986) terminology, this corresponds to an integrated GARCH model with integration order 

higher than one. In samples from 1974 onwards, however, this sum is much lower and less 

than one. This provides further evidence that the GARCH (1,1) specification is appropriate 

for recent subsamples, as persistence in the conditional variance process could be indicative 

of the variance equation being misspecified. An example of this is Lamoureux & Lastrapes 

(1990), who provide empirical evidence that persistence in stock return variance is sensitive 

to model specification and decreases when control variables are included. To ensure 

consistency and comparability in this analysis, We adopt the same GARCH specification for 

all sample periods. Lastly, the model employed in this analysis is assumed to exhibit the 
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asymptotic properties of GARCH processes outlined in Bougerol & Picard (1992), Lumsdaine 

(1991, 1996), and Nelson (1990). 

 

Table 5 provides exclusion test results for each specification and sample period having 

introduced normalised oil price shocks into each system. From this output, there is little 

evidence that the normalised oil price shocks are more highly correlated with changes in real 

GDP than oil price changes. Test statistics for normalised price shock variables are not 

statistically significant except in early sample periods (see columns (I) and (IV) of the table). 

Interestingly, although normalised price shocks are not statistically significant individually, 

when considered with oil price changes, they are jointly significant. This is caused by the 

strong correlation between oil price changes and normalised oil price shocks. Note that early 

parts of the sample period, where normalised oil price shocks are highly statistically 

significant, match the periods in which Lee et al. (1995) found a statistically significant 

relationship between normalised oil price shocks and real GDP fluctuations. Their result is 

reflected here but appears to dissipate in later sections of the sample. 

  



18 

 

   (I) (II) (III) (IV) 

Specification Proxy Variable 
1950:1-
1985:4 

1974:1-
2015:2 

1986:1-
2015:2 

1950:1-
2015:2 

6-variable 
System 1 

PPI 

Oil Price Change 
5.353 7.932* 11.293** 12.568** 

(0.253) (0.094) (0.023) (0.014) 

Normalised Oil 

Price Shock (ε*) 

25.408*** 4.159 5.388 28.266*** 

(0.000) (0.385) (0.250) (0.000) 

RAC 

Oil Price Change — 
5.220 2.939 

— 
(0.265) (0.568) 

Normalised Oil 

Price Shock (ε*) 
— 

1.612 3.780 
— 

(0.807) (0.437) 

7-variable 
System 1 

PPI 

Oil Price Change — 
8.713* 11.648** 

— 
(0.069) (0.020) 

Normalised Oil 

Price Shock (ε*) 
— 

4.533 5.723 
— 

(0.339) (0.221) 

RAC 

Oil Price Change — 
6.004 3.065 

— 
(0.199) (0.547) 

Normalised Oil 

Price Shock (ε*) 
— 

2.085 4.567 
— 

(0.720) (0.335) 

8-variable 
System 1 

PPI 

Oil Price Change — — 
11.934** 

— 
(0.018) 

Normalised Oil 

Price Shock (ε*) 
— — 

7.295 
— 

(0.121) 

RAC 

Oil Price Change — — 
3.283 

— 
(0.512) 

Normalised Oil 

Price Shock (ε*) 
— — 

4.634 
— 

(0.327) 
Table 5. Exclusion tests for normalised oil price shocks. P-values are given in parentheses. Statistical significance 

is shown at the 10% level (*), 5% level (**) and 1% level (***). 

 

In addition, 3-month TB rate is highly correlated with output growth, which suggests that 

monetary policy plays an important role in determining the path of output growth rate. This 

introduces the challenge of disentangling two distinct effects on GDP growth when the 

monetary authority reacts to an oil price shock with an interest rate adjustment, and highlights 

the key role policy plays in the ultimate outcome of an oil price shock. From an econometric 

modelling perspective, this makes 3-month TB rate a key control variable in the VAR systems, 

as in its absence, oil price fluctuations are wrongly credited with having had a large impact 

on GDP growth. 

 

We now shift focus to test for the existence of an asymmetric relationship between oil price 

fluctuations and changes in GDP. To do so, the normalised oil price series are modelled in a 
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non-linear fashion as shown in equation 1. The aim is to determine whether positive 

normalised oil price changes Granger-cause GDP growth while negative changes do not. The 

results in Table 6 are striking, especially in comparison to those in Table 5 above: positive 

normalised oil price shocks Granger-cause GDP growth across all sample periods and model 

specifications, whereas negative ones do not. This outcome is in sharp contrast with the earlier 

evidence that normalised oil price shocks are not strongly linked to output growth rate. The 

underlying implication of this is that when price changes are taken as a whole, their statistical 

significance weakens due to an averaging out effect of positive and negative price shocks. 

When modelled explicitly, normalised positive oil price shocks are highly statistically 

significant even in larger specifications with key control variables identified in earlier sections.  

 

The results in this table facilitate deeper analysis of the oil price-GDP growth relationship 

across four key dimensions. First, RAC is a better proxy for oil prices than the PPI-based 

measure. This is particularly clear in NOPI systems 1 and 2: using PPI, the null hypothesis of 

no Granger causality would not have been rejected based on columns (II) and (III) of the 

table, which would have suggested a weakening relationship between oil prices and GDP 

growth in those sample periods. This applies to 8-variable system 2 as well and explains why 

researchers observed a weakening relationship when recent data became available. Using 

RAC as the proxy shows, however, that the relationship remains important even in large 

systems. Second, there is no evidence of a weaker relationship in more recent sample periods 

when normalised price variables are used, unlike in Table 5, where a weakening relationship 

was observed across time. Third, there is strong evidence of asymmetry: positive price shocks 

have explanatory power that negative shocks do not. This holds in all specifications and 

sample periods. Fourth, capturing volatility effectively is central to these results, as 

normalised positive oil price fluctuations retain their explanatory power in the GDP growth 

equation when the NOPI system 3—the largest NOPI system, which is analogous to 8-

variable system 2—does not.  
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   (I) (II) (III) (IV) 

Specification Proxy Variable 
1950:1-
1985:4 

1974:1-
2015:2 

1986:1-
2015:2 

1950:1-
2015:2 

6-variable 
System 2 

PPI 

Norm. +'ve Oil 

Price Shock (ε*+) 

62.376*** 11.238** 13.112** 67.683*** 

(0.000) (0.024) (0.011) (0.000) 

Norm. -'ve Oil 

Price Shock (ε*-) 

0.816 2.614 3.648 1.859 

(0.936) (0.624) (0.456) (0.762) 

RAC 

Norm. +'ve Oil 

Price Shock (ε*+) 
— 

18.513*** 19.877*** 
— 

(0.001) (0.001) 

Norm. -'ve Oil 

Price Shock (ε*-) 
— 

0.539 4.222 
— 

(0.970) (0.377) 

7-variable 
System 2 

PPI 

Norm. +'ve Oil 

Price Shock (ε*+) 
— 

11.487** 14.855*** 
— 

(0.022) (0.005) 

Norm. -'ve Oil 

Price Shock (ε*-) 
— 

2.898 6.042 
— 

(0.575) (0.196) 

RAC 

Norm. +'ve Oil 

Price Shock (ε*+) 
— 

18.896*** 21.980*** 
— 

(0.001) (0.000) 

Norm. -'ve Oil 

Price Shock (ε*-) 
— 

0.725 6.158 
— 

(0.948) (0.188) 

8-variable 
System 2 

PPI 

Norm. +'ve Oil 

Price Shock (ε*+) 
— — 

9.421* 
— 

(0.051) 

Norm. -'ve Oil 

Price Shock (ε*-) 
— — 

6.604 
— 

(0.158) 

RAC 

Norm. +'ve Oil 

Price Shock (ε*+) 
— — 

16.900*** 
— 

(0.002) 

Norm. -'ve Oil 

Price Shock (ε*-) 
— — 

6.110 
— 

(0.191) 

NOPI  
System 1 

PPI 
Net Oil Price 
Increase 

31.141*** 5.881 3.549 14.062*** 
(0.000) (0.208) (0.470) (0.007) 

RAC 
Net Oil Price 
Increase 

— 
14.457*** 8.861* 

— 
(0.006) (0.065) 

NOPI  
System 2 

PPI 
Net Oil Price 
Increase 

— 
5.951 4.286 

— 
(0.203) (0.369) 

RAC 
Net Oil Price 
Increase 

— 
14.896*** 9.627** 

— 
(0.005) (0.047) 

NOPI  
System 3 

PPI 
Net Oil Price 
Increase 

— — 
1.010 

— 
(0.908) 

RAC 
Net Oil Price 
Increase 

— — 
4.767 

— 
(0.312) 

Table 6. Exclusion tests for specifications with normalised and net oil price changes with asymmetry. P-values 

are given in parentheses. Statistical significance is shown at the 10% level (*), 5% level (**) and 1% level (***).  

 

Further investigation into these observations revealed that they are not simply due to higher 

RMSE. For example, 8-variable system 2 with PPI and RAC as proxies yielded virtually 

identical RMSE values. The same holds for same model specifications across time, such that 
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7-variable system 2 using RAC showed that RMSE did not change substantially when the 

model was estimated in the 1974:1-2015:2 sample period versus 1986:1-2015:2. Jointly, these 

suggest that when a weaker relationship is observed, it tends to be due to changing parameter 

estimates as opposed to the point estimates being less precisely estimated. Having established 

this, later sections focus on the magnitude of the impact as opposed to the statistical 

significance of point estimates.  

4.3.1 The Oil Price-GDP Relationship Across Time 

This section elaborates on the findings outlined above to address the heavily debated claim in 

the oil price-macroeconomy literature that oil price fluctuations may not be as relevant today 

as they used to be. Some researchers argue that the relationship has been weakening over time 

and that this is reflected in empirical results (Hooker, 1996b, 1996a). However, results in 

Table 6 show little evidence that oil price shocks no longer Granger-cause changes in output 

growth in recent sample periods, especially when normalised oil prices are used. This 

observation comes with the caveat that it relates strictly to Granger causality and not the size 

of the effect. Impulse response analysis in the next section examines this aspect in greater 

detail.  

 

In this section, we implement a time-varying parameter approach using a rolling window of 

132 quarters estimated sequentially from 1974:1 onwards. Exclusion tests are conducted after 

each iteration to observe changes in the statistical significance of oil price shocks over time.1 

The resulting p-values on normalised positive PPI- and RAC-based oil price shocks in 7-

variable system 2 are shown in the left and right panels of Figure 2 below, respectively.2 In 

the left panel, only the first three p-values—those where estimations start in 1974:1 through 

1974:3—are greater than 0.01. A clear conclusion is that the normalised positive shocks used 

in this system remain statistically significant in recent periods. P-values calculated for RAC-

 

 

1 Note that although this section focuses on a discussion of statistical significance, other sections put an emphasis 

on interval estimates and how wide they are. The purpose of focussing on point estimates and p-values here is 

to address the ongoing debate in the literature.  
2 P-values shown in the figures are not identical to those presented in Table 6, since the former use a 132-quarter 

rolling window sample period whereas the latter uses as much of the sample period as available. 
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based normalised positive price shocks follow a virtually identical pattern (see right panel of 

Figure 2). These observations on the statistical significance of normalised positive oil price 

shock variables are in sharp contrast with their negative counterparts shown in Figure 3.  

  

Figure 2. Exclusion test p-values for PPI- (left) and RAC-based (right) normalised positive oil price shocks in 7-

variable system 2 using a rolling window against starting quarter. 

 

  

Figure 3. Exclusion test p-values for PPI- (left) and RAC-based (right) normalised negative oil price shocks in 7-

variable system 2 using a rolling window against starting quarter. 
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Figure 3 corroborates the earlier asymmetry observation: within this dataset, independently 

of sample period, oil price increases have an impact on GDP growth and oil price falls do not.  

 

We now briefly return to ordinary (non-normalised and linear) shocks in a rolling-window 

context to finalise the temporal investigation. Similar to my earlier findings, this exercise 

revealed a weaker relationship between oil price changes and GDP growth than only positive 

price changes. This is due to an averaging out effect of positive and negative price shocks. 

Figure 4 highlights once again why researchers focussing on sample periods starting in 1970s 

found a weakening relationship between oil price changes and GDP growth. Exclusion tests 

fail to reject the null hypothesis of no Granger causality in sample periods starting from 1974:1 

through 1976:2 inclusive. Therefore, based on the right panel of Figure 4, a key interpretation 

of these time-varying estimations is that an analysis focussing on the sample period 1980:1 

onwards (due to data availability at the time of writing, for instance) would have concluded 

that oil price changes do not have a statistically significant impact on GDP growth. In light 

of the findings from this section, however, this is an incomplete analysis and misrepresents 

the true nature of the oil price-macroeconomy relationship. Following this period, there is 

evidence against a weakening relationship between oil price fluctuations and output growth 

in the US. Generally, in a Granger-causality sense, there is little evidence that the link between 

oil prices and output growth has vanished over the past few decades, although these results 

do not reveal any information about the size of the effect, which is investigated in the next 

section. 
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Figure 4. Exclusion test p-values for PPI- (left) and RAC-based (right) non-normalised oil price shocks in 7-

variable system 1 using a rolling window against starting quarter.  

 

The remaining question is whether normalised oil price variables have more explanatory 

power in key estimated equations than non-normalised ones. In this study, we find evidence 

of a weaker relationship between non-normalised price variables and macroeconomic 

fundamentals than normalised ones (see, for example, p-values shown in Figure 2 versus 

Figure 4). Revisiting tables and figures from previous sections can shed light on this. Tables 5 

and 6 have output from specifications that allow this, and Figures 2, 3, and 4 put the results 

into a time-varying parameter context.  

 

For a richer visualisation, Figure 5 below provides a three-dimensional representation of 

exclusion test p-values (z-axis) across model specification (y-axis) with varying starting 

quarter (x-axis). The right-most specification, 6-variable system 1, has the least stable 

exclusion test p-values among those considered here. Particularly in the early parts of the 

sample, exclusion test p-values on RAC-based oil price changes are considerably higher than 

those in other specifications. The specifications with normalised price fluctuations have much 

flatter p-value profiles within the [0, 0.05] range than those with non-normalised series. This 

three-dimensional representation also allows a snapshot across specifications at a given 
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low p-values for the first three specifications (those with normalised oil price variables) and 

high ones for the rest (those with non-normalised oil price variables). As a result, we conclude 

that normalised variables have more systematic relationship with output growth than their 

non-normalised counterparts.  

 

Figure 5. Exclusion test p-values (z-axis) across model specification (y-axis) with varying starting quarter (x-

axis). Excluded variables as follows. 6-variable system 1: RAC-based oil price changes; 6-variable system 2: 

normalised positive oil price changes; 7-variable system 1: PPI- and RAC-based oil price changes; 7-variable 

system 2: PPI- and RAC-based normalised positive oil price changes. Each colour contour on the z-axis 

represents an increment of 0.05. 
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all estimated impulse response functions, only some quarters showed an impact outside of the 

95% confidence interval. With oil price increases as the impulse, this tended to be in the first 

and third quarters. Although there are some instances where other quarters had a confidence 

interval that excluded zero, the interpretation is that the US economy adjusts to oil price 

increases quickly, making an impulse transient. The results that follow are interpreted with 

this understanding, although the main focus is on the overall trend and total impact as 

opposed to individual point estimates. Starting with the 7-variable system 2 over the 1974:1-

2015:2 subsample, the response of output growth rate to a 10% shock to PPI-based normalised 

oil price increase and decrease are shown in Figure 6.  

  

Figure 6. Response of real GDP growth to a 10% PPI-based normalised positive (left) and negative (right) oil 

price shock. IRF estimated based on 7-variable system 2 in 1974:1-2015:2 sample period. 95% confidence 

interval shown with dashed lines. 

 

In the left panel, the confidence bands indicate that only the first and third quarters’ responses 

are different from zero and that the estimated response becomes weaker over time. Point 

estimates from the eighth quarter onwards are positive indicating a slight overshooting as the 

economy adjusts to the new oil price environment about two years after the initial shock. The 

total estimated impact of a 10% increase in the price of oil on annualised real output growth 
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over 20 quarters is -0.2%3 in this specification, proxy, and sample period combination. This 

implies that a 10% increase in oil price is expected to reduce real GDP growth by 0.2% over 

a five-year horizon. RAC-based oil price shocks yielded similar results as shown in Figure 7.  

  

Figure 7. Response of real GDP growth to a 10% RAC-based normalised positive (left) and negative (right) oil 

price shock. IRF estimated based on 7-variable system 2 in 1974:1-2015:2 sample period. 95% confidence 

interval shown with dashed lines. 

 

Interestingly, a fall in the price is estimated to have a negative impact on output growth rate 

as shown in the right panels of Figures 6 and 7. The initial flat effect in the first quarter is 

followed by a positive one in the second quarter, but negative ones follow immediately after, 

leading to an overall decline in the response variable. In these two figures, the estimated OIRF 

converges to zero, which indicates that an orthogonalised innovation to the corresponding oil 

price variable does not have a permanent effect on real GDP growth rate in the US. The 

overall annualised impact estimated here is on par with those calculated by Lee et al. (1995) 

and Blanchard & Galí (2007). Further, much like Blanchard & Galí's (2007) findings, We 

observe a larger impact in the middle of the sample period than later. 

 

This is more apparent in Figure 8 below and Figure A1 in Appendix A, which were 

constructed using rolling IRFs and give a more detailed view of the results. Regardless of 

sample period and proxy, the first quarter following an oil price increase showed a negative 

 

 

3 These results are expressed in percentage points but shown as a percentages for simplicity.  
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GDP growth rate followed by an overshooting effect in the second quarter. Another common 

feature across the two figures is the dying out effect of the original shock roughly from the 

eighth quarter onwards—represented by the flattening out of the surfaces in the two figures. 

Further, as the starting quarter moves from mid- to late-1970s, both the initial negative impact 

and the overshooting effect that follows become more pronounced with the largest observed 

impact corresponding to 1977.  

 

 

Figure 8. Rolling IRFs with a 10% RAC-based normalised positive oil price shock using 7-variable system 2. 

 

Blanchard & Galí (2007) write “in the [1970s], output is estimated to decline as much as 1 

percent two years after the 10 percent change in the price of oil.” IRFs based on 7-variable 

system 2 yielded a similar total annualised figure but smaller quarterly effects. Similarly, Lee 

et al. (1995) estimated the response after 24 quarters to be -0.65—larger than the one observed 

here—but estimated IRFs behave similarly and demonstrate the same sign characteristics: an 

immediate negative impact on GDP growth followed by a period of overshooting and 

convergence towards the x-axis such that much of the effect dissipates eight quarters after the 
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IRFs based on 8-variable system 2 were also generated for sense- and robustness-checking 

purposes. Although this specification uses a more recent and shorter sample period, estimated 

IRFs behave similarly to the 7-variable system. Annualised impact on real GDP growth of a 

10% increase in oil price is estimated as -0.3 over a 20-quarter horizon independently of proxy 

used. This figure is close to the sum of estimated responses from the 7-variable system within 

the same sample period and translates to an average of 0.06% fall in GDP growth rate per 

year for 5 years. Figures A2 and A3 in Appendix A show the functions where RAC is used.  

The increase in overall impact in the most recent sample suggests that normalised positive oil 

price changes not only retain their explanatory power but also the magnitude of impact. This 

is a new finding in the oil price-macroeconomy literature, as most studies have found evidence 

of a weakening relationship in recent sample periods, and is due to the way in which oil prices 

are modelled. IRF impact estimates for both specifications and subsamples are given in Table 

7.  

 

Specification Proxy 1974:1-2015:2 1986:1-2015:2 

7-variable System 2 

PPI 
-0.16 -0.34 

(-0.03) (-0.07) 

RAC 
-0.14 -0.32 

(-0.03) (-0.06) 

8-variable System 2 

PPI — 
-0.32 

(-0.06) 

RAC — 
-0.30 

(-0.06) 

Table 7. IRF results: annualised percent changes in output growth rate as a response to a 10 percent increase in 

oil prices over a 20-quarter horizon. Values in parentheses are average per year responses of output growth rate 

to the impulse. 

 

These estimates lie within the range of other studies in the literature. In addition to those 

mentioned above, Schneider (2004) outlines that estimated per-year response of US output 

growth ranges from -0.02 percent as estimated by Abeysinghe (2001) using an SVAR and -

0.06 percent as estimated by Jiménez-Rodríguez & Sanchez (2005) using a VAR. More 

recently, Rasmussen & Roitman (2011) reported that a 25% increase in oil prices is expected 

to cause a 1% decrease in GDP for countries whose oil imports account for 4% of total 

expenditure in a panel study. My findings suggest that a 10% increase in the price of oil is 
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expected to cause an average of 0.03% per year fall in GDP growth for five years in the early 

sample and 0.06% per year fall in the later sample.  

 Conclusions and Policy Implications 

This paper has investigated the oil price and macroeconomy relationship across several 

dimensions with the goal of answering four pending questions in the literature. These relate 

to the results observed in empirical studies depending on the (i) choice of oil price measure, 

(ii) sample period considered, (iii) level asymmetry built into the model, and (iv) role of 

volatility.  

 

Addressing each of these questions one by one: (i) based on the results and analysis, RAC 

was found to be a more robust measure of oil price level than PPI for crude oil; (ii) there is 

limited evidence that the oil price shocks do not Granger-cause fluctuations in output growth 

rate in recent samples. Further, the findings suggest that the impact of the shocks increased in 

post-1986 data, and model specification and choice of sample period influence parameter 

estimates greatly, resulting in misleading outcomes; (iii) there is strong evidence for an 

asymmetric effect of oil prices on output across model specification and sample period; and 

lastly, (iv) normalised positive oil price shocks are more highly correlated with output growth 

rate than any other oil price variable considered. This provides evidence for the claim that 

volatility of oil prices before a shock occurs matters. Hence, unexpected positive oil price 

shocks are predicted to have a much larger impact on macroeconomic activity than 

anticipated ones.  

 

These findings contradict some researchers’ views and findings (for example, Hooker, 1999) 

that oil price changes do not Granger-cause fluctuations in output in most recent subsamples. 

There is some evidence that the magnitude of the effect was larger in 1970s than 1980s, but 

that this reversed in post-1986 samples. Throughout the analysis, models that allow for 

asymmetry generally performed better—without separating oil price variables into their 

positive and negative counterparts, the statistical significance of the former is diluted by the 

latter, making the non-linear transformation adopted here a necessary step in this type of 

analysis. The approach outlined here does not rely on strong assumptions about underlying 
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causes of individual oil price shocks or indices that help categorise the shocks into a pre-

determined structure.  

 

Impulse response analysis found that positive oil price shocks have a significant negative 

impact on output growth rate in the US, whereas the impact of oil price falls matter much 

less. Post-1974 data indicate that the effect on annual output growth rate of a 10% increase in 

oil prices ranges between -0.014 and -0.034% over a horizon of 20 quarters, although most of 

the impact dissipates about eight quarters after the shock.  

 

Obtaining parameter estimates and impulse responses across sample periods and model 

specifications has allowed a unique and rich perspective on a relationship with a long 

macroeconomic and econometric history. Modelling implications and recommendations are 

summarised below.  

Modelling implications Recommendation based on this study 

Choice of oil price measure can change 

estimation results 
Use RAC to measure oil prices 

Oil price shocks no longer Granger-cause 

fluctuations in GDP growth in the US 

When modelled correctly (normalisation 

and non-linear transformation), oil price 

increases Granger-cause changes in US 

output growth 

Oil price shocks have a negligible effect on 

US economic growth 

Analysis of post-1986 data indicates that 

oil price hikes have a larger impact on real 

GDP growth than early 1980s 

Oil price shocks must be modelled based 

on their underlying cause 

Relying on structural assumptions or 

indices is not necessary. Normalisation 

and non-linear transformation of oil prices 

are sufficient in a VAR context  

Table 8. Modelling implications and recommendations based on this study. 

 

These findings have policy implications in several dimensions. First, policy variables, such as 

3-month TB rate, still play a key role in determining the path of real output growth. Second, 
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using RAC as the oil price proxy has modelling advantages. Third, oil price-macroeconomy 

relationship has evolved over time, so parameter estimates and model calibration are sensitive 

to sample period. Fourth, the relationship in question can be modelled accurately without 

resorting to structural assumptions or unreliable proxies to describe oil price behaviour, 

because adjusting for volatility suffices. The rolling-window implementation in this study 

corroborates these conclusions and ensures they are not sensitive to sample period.   



33 

 References 

Abeysinghe, T. (2001). Estimating direct and indirect impact of oil price on growth. Economics 

Letters, 73, 147–153. 

Balassa, B. (1986). Policy Responses to Exogenous Shocks in Developing Countries. American 

Economic Review, 76(2), 75–78. https://doi.org/10.2307/3439219 

Baumeister, C., & Peersman, G. (2013). Time-Varying Effects of Oil Supply Shocks on the U 

. S . Economy Time-Varying Effects of Oil Supply Shocks. American Economic Journal: 

Macroeconomics, 5(4), 1–28. https://doi.org/10.1257/mac.5.4.1 

Bernanke, B. S., Gertler, M., & Watson, M. (1997). Systematic Monetary Policy and the 

Effects of Oil Price Shocks. Brookings Papers on Economic Activity, 1997(1), 91–157. 

https://doi.org/10.2307/2534702 

Blanchard, O. J., & Galí, J. (2007). The Macroeconomic Effects Of Oil Price Shocks: Why 

Are The 2000s So Different From The 1970s? NBER Working Paper Series, 13368(August). 

Bollerslev, R. Y., Chou, Y., & Kroner, K. (1992). ARCH modeling in finance: A review of 

the theory and empirical evidence. Journal of Econometrics, 52(1–2), 5–59. 

Bougerol, P., & Picard, N. (1992). Stationarity of Garch processes and of some nonnegative 

time series. Journal of Econometrics, 52(1–2), 115–127. https://doi.org/10.1016/0304-

4076(92)90067-2 

Chen, S. S., & Chen, H. C. (2007). Oil prices and real exchange rates. Energy Economics, 29(3), 

390–404. https://doi.org/10.1016/j.eneco.2006.08.003 

Engle, R. F., & Bollerslev, T. (1986). Modelling the persistence of conditional variances. 

Econometric Reviews, 5(1), 1–50. https://doi.org/10.1080/07474938608800095 

Ferderer, J. P. (1997). Oil price volatility and the macroeconomy. Journal of Macroeconomics, 

18(1), 1–26. Retrieved from 

http://www.sciencedirect.com/science/article/pii/S0164070496800012 

Gómez-Loscos, A., Gadea, M. D., & Montañés, A. (2012). Economic growth, inflation and 

oil shocks: Are the 1970s coming back? Applied Economics, 44(35), 4575–4589. 

https://doi.org/10.1080/00036846.2011.591741 

Gronwald, M. (2008). Large oil shocks and the US economy: Infrequent incidents with large 

effects. Energy Journal, 29(1), 151–169. https://doi.org/10.5547/ISSN0195-6574-EJ-



34 

Vol29-No1-7 

Gronwald, M. (2012). Oil and the U.S. macroeconomy: A reinvestigation using rolling 

impulse responses. Energy Journal, 33(4), 143–159. 

https://doi.org/10.5547/01956574.33.4.7 

Hamilton, J. D. (1983). Oil and the Macroeconomy since World War II. Journal of Political 

Economy, 91(2), 228–248. https://doi.org/10.1086/261140 

Hamilton, J. D. (1996). This is what happened to the oil price-macroeconomy relationship. 

Journal of Monetary Economics, 38(2), 295–213. https://doi.org/10.1016/S0304-

3932(96)01283-4 

Hamilton, J. D. (2003). What is an oil shock? Journal of Econometrics, 113(2), 363–398. 

https://doi.org/10.1016/S0304-4076(02)00207-5 

Hamilton, J. D. (2005). Oil and the Macroeconomy. The New Palgrave Dictionary of Economics, 

91(2), 1–17. https://doi.org/10.1086/261140 

Hamilton, J. D. (2009). Causes and Consequences of the Oil Shock of 2007–08. Brookings 

Papers on Economic Activity, 2009(1), 215–261. https://doi.org/10.1353/eca.0.0047 

Hamilton, J. D., & Herrera, A. M. (2004). Oil shocks and aggregate macroeconomic 

behavior: the role of monetary policy: a comment. Journal of Money, Credit and Banking, 

36(2), 265–286. https://doi.org/10.2307/3839020 

Herrera, A. M., Karaki, M. B., & Rangaraju, S. K. (2019). Oil price shocks and U.S. economic 

activity. Energy Policy, 129(August 2018), 89–99. 

https://doi.org/10.1016/j.enpol.2019.02.011 

Hooker, M. A. (1996a). This is what happened to the oil price-macroeconomy relationship - 

Reply. Journal of Monetary Economics, 38(2), 221–222. https://doi.org/10.1016/S0304-

3932(96)01283-4 

Hooker, M. A. (1996b). What happened to the oil price-macroeconomy relationship? Journal 

of Monetary Economics, 38(2), 195–213. https://doi.org/10.1016/S0304-3932(96)01283-4 

Hooker, M. A. (1999). Oil and the Macroeconomy Revisited. FEDS Working Paper, 99(43). 

https://doi.org/http://dx.doi.org/10.2139/ssrn.186014 

Huang, B.-N., Hwang, M. J., & Peng, H.-P. (2005). The asymmetry of the impact of oil price 

shocks on economic activities: An application of the multivariate threshold model. 

Energy Economics, 27(3), 455–476. https://doi.org/10.1016/j.eneco.2005.03.001 



35 

Huang, R. D., Masulis, R. W., & Stoll, H. R. (1996). Energy Shocks and Financial Markets. 

Journal of Futures Market, 16(1), 1–36. 

Jiménez-Rodríguez, R., & Sanchez, M. (2005). Oil price shocks and real GDP growth: 

empirical evidence for some OECD countries. Applied Economics, (2), 201–228. 

https://doi.org/10.1080/0003684042000281561 

Kilian, L. (2008). A comparison of the effects of exogenous oil supply shocks on output and 

inflation in the G7 countries. Journal of the European Economic Association, 6(1), 78–121. 

https://doi.org/10.1162/JEEA.2008.6.1.78 

Kilian, L. (2009). Not All Oil Price Shocks Are Alike : Disentangling Supply Shocks in the 

Crude Oil Market. The American Economic Review, 99(3), 1053–1069. 

https://doi.org/10.1257/aer.99.3.1053 

Kilian, L., & Vigfusson, R. J. (2011). Are the responses of the U.S. economy asymmetric in 

energy price increases and decreases? Quantitative Economics, 2(3), 419–453. 

https://doi.org/10.3982/QE99 

Lamoureux, C. G., & Lastrapes, W. D. (1990). Heteroskedasticity in Stock Return Data: 

Volume versus GARCH Effects. The Journal of Finance, 45(1), 221–229. 

https://doi.org/10.1111/j.1540-6261.1990.tb05088.x 

Lee, K., Ni, S., & Ratti, R. A. (1995). Oil shocks and the macroeconomy: the role of price 

variability. Energy Journal, 16(4), 39–56. https://doi.org/10.5547/ISSN0195-6574-EJ-

Vol16-No4-2 

Lumsdaine, R. L. (1991). Asymptotic properties of the maximum likelihood estimator in 

GARCH (1, 1) and IGARCH (1, l) models. Princeton University Working Paper Series, 

Department. 

Lumsdaine, R. L. (1996). Consistency and Asymptotic Normality of the Quasi-Maximum 

Likelihood Estimator in IGARCH ( 1 , 1 ) and Covariance Stationary GARCH ( 1 , 1 ) 

Models Author ( s ): Robin L . Lumsdaine Published by : The Econometric Society Stable 

URL : http://www.jstor.org/. Econometrica: Journal of the Econometric Society, 575–596. 

Martin, R. (2012). Regional economic resilience, hysteresis and recessionary shocks. Journal 

of Economic Geography, 12(1), 1–32. https://doi.org/10.1093/jeg/lbr019 

Mork, K. A. (1989). Oil and the Macroeconomy When Prices Go Up and Down: An 

Extension of Hamilton’s Results. Journal of Political Economy, 97(3), 740. 



36 

https://doi.org/10.1086/261625 

Mory, J. F. (1993). Oil Prices and Economic Activity: Is the Relationship Symmetric? Energy 

Journal, 14(4), 151–161. 

Narayan, P. K., & Narayan, S. (2007). Modelling oil price volatility. Energy Policy, 35(12), 

6549–6553. https://doi.org/10.1016/j.enpol.2007.07.020 

Nelson, D. B. (1990). Stationarity and persistence in the GARCH (1, 1) model. Econometric 

Theory, 6(3), 313–334. 

Pindyck, R. S. (1999). The long-run evolution of energy prices. The Energy Journal, 1–27. 

Pindyck, R. S. (2004a). Volatility and commodity price dynamics. Journal of Futures Markets, 

24(11), 1029–1047. https://doi.org/10.1002/fut.20120 

Pindyck, R. S. (2004b). Volatility in natural gas and oil markets. The Journal of Energy and 

Development, 30(1), 1–17. https://doi.org/10.1093/oxrep/gri002 

Plourde, A., & Watkins, G. . (1998). Crude oil prices between 1985 and 1994: how volatile 

in relation to other commodities? Resource and Energy Economics, 20(3), 245–262. 

https://doi.org/10.1016/S0928-7655(97)00027-4 

Rasmussen, T. N., & Roitman, A. (2011). Oil Shocks in a Global Perspective : Are they Really 

that Bad ? IMF Working Papers. https://doi.org/10.5089/9781462305254.001 

Regnier, E. (2007). Oil and energy price volatility. Energy Economics, 29(3), 405–427. 

https://doi.org/10.1016/j.eneco.2005.11.003 

Romer, C. D., & Romer, D. H. (2004). A New Measure of Monetary Shocks - Derivation 

and Implications. American Economic Review, 94(4), 1055–1084. 

Rotemberg, J., & Woodford, M. (1991). The Cyclical Behavior of Prices and Costs. Journal of 

Monetary Economis, 28(January 1999). 

Sadorsky, P. (1999). Oil price shocks and stock market activity. Energy Economics, 21, 449–

469. 

Sadorsky, P. (2003). The macroeconomic determinants of technology stock price volatility. 

Review of Financial Economics, 12(2), 191–205. https://doi.org/10.1016/S1058-

3300(02)00071-X 

Sadorsky, P. (2006). Modeling and forecasting petroleum futures volatility. Energy Economics, 

28(4), 467–488. https://doi.org/10.1016/j.eneco.2006.04.005 

Schneider, M. (2004). The Impact of Oil Price Changes on Growth and Inflation. Monetary 



37 

Policy & the Economy, 2. 

Wei, Y., Wang, Y., & Huang, D. (2010). Forecasting crude oil market volatility: Further 

evidence using GARCH-class models. Energy Economics, 32(6), 1477–1484. 

https://doi.org/10.1016/j.eneco.2010.07.009 

Yang, C. W., Hwang, M. J., & Huang, B.-N. (2002). An analysis of factors affecting price 

volatility of the US oil market. Energy Economics, 24(2), 107–119. 

https://doi.org/10.1016/S0140-9883(01)00092-5 

  



38 

 Appendix A: Supplementary Tables and Figures 

 

Figure A1. Rolling IRFs with a 10% PPI-based normalised positive oil price shock using 7-variable system 2. 
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Figure A2. Response of real GDP growth to a 10% RAC-based normalised positive oil price shock. IRF 

estimated based on 7-variable system 2 in 1986:1-2015:2 sample period. 95% confidence interval shown with 

dashed lines. 

 

Figure A3. Response of real GDP growth to a 10% RAC-based normalised positive oil price shock. IRF 

estimated based on 8-variable system 2 in 1986:1-2015:2 sample period. 95% confidence interval shown with 

dashed lines. 
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Model 

Specification 

GDP 

Growth 

Oil 

Price 

Change 

Oil 

Price 

Increase 

Oil Price 

Decrease 

Normalised 

Oil Shock 

Normalised 

Positive 

Oil Shock 

Normalised 

Negative 

Oil Shock 

Net Oil 

Price 

Increase 

GDP 

Deflator 

Inflation 

3m 

TB 

rate 

Unemp. 

Rate 

Real 

Wage 

Inflation 

Import 

Price 

Inflation 

Base Model ✓ ✓ 
 

     ✓  ✓ ✓  

Asym. Eff. 

Model ✓  ✓ ✓     ✓ ✓ ✓ ✓ ✓ 

6-variable 

System 1 ✓ ✓   ✓    ✓  ✓ ✓  

6-variable 

System 2 ✓     ✓ ✓  ✓  ✓ ✓  

6-variable 

System 3 ✓    ✓    ✓ ✓ ✓ ✓  

7-variable 

System 1 ✓ ✓   ✓    ✓ ✓ ✓ ✓  

7-variable 

System 2 ✓     ✓ ✓  ✓ ✓ ✓ ✓  

7-variable 

System 3 ✓     ✓ ✓  ✓ ✓ ✓ ✓  

8-variable 

System 1 ✓ ✓   ✓    ✓ ✓ ✓ ✓ ✓ 

8-variable 

System 2 ✓     ✓ ✓  ✓ ✓ ✓ ✓ ✓ 

8-variable 

System 3 ✓ ✓    ✓ ✓  ✓ ✓ ✓ ✓  

NOPI 

System 1 ✓       ✓ ✓  ✓ ✓  

NOPI 

System 2 ✓       ✓ ✓ ✓ ✓ ✓  

NOPI 

System 3 ✓       ✓ ✓ ✓ ✓ ✓ ✓ 

 

Table A1. Model specifications.
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